2025-05-23 00:38:20
用于钢制镗刀杆的镗刀片型号有:CNMG332、CNMG432和CNMG542;DNMG332和DNMG442;SNMG432;TNMG332和TNMG432;VNMG332和VNMG432;WNMG332和WNMG432。镗刀片的主要几何角度有前角、刃倾角和余偏角。前角和刃倾角为负值,典型的前角值为-6°;刃倾角根据刀片形状的不同,在-10°~-16°之间取值;余偏角与刀片形状有关:CNMG和WNMG为-5°,DNMG和VNMG为-3°,TNMG为-1°,SNMG为15°。用户通过对刀片材料及几何参数、刀杆材料及切削力进行认真权衡和好选择,就会使镗刀的挠曲减至较小,加工出符合要求的孔。精密镗孔时需要控制切削参数,避免产生振动和表面粗糙度不良。苏州刨台铣镗加工原理
电子行业的应用:在电子行业领域,镗床发挥着至关重要的作用,它被普遍应用于生产制造各类精密的电子零部件。具体而言,诸如电子元器件中的小孔、通道等精细结构,以及LCD屏幕等电子设备中的特定部件,都离不开高精度镗床的精细加工。这些部件在经过镗床的精确打磨后,不仅尺寸和形状得以严格控制,其表面质量也得到了明显提升,从而确保了整体产品的高质量与高性能。综上所述,镗床作为机械制造行业中的关键设备,其应用领域普遍,涵盖多个不同加工精度需求的零件生产活动。苏州刨台铣镗加工原理高速镗削能提高生产效率,但对机床动态性能要求更高。
镗铣是一种重要的机械加工方法,普遍应用于各种机械零件的加工过程中。下面我们将详细介绍镗铣的加工原理。镗铣的基本概念:镗铣,顾名思义,是镗削和铣削两种加工方式的结合。它主要用于加工孔和平面,通过旋转的刀具对工件进行切削,以达到所需的形状和尺寸。在机械加工领域,镗铣以其高精度和高效率而备受青睐。航空航天领域的应用:在航空航天领域,精镗床的精确度至关重要。航空发动机的涡轮、叶片以及轴承等主要部件的制造,都离不开高精度镗床的加工。例如,涡轮中的气体通道以及叶片根部的钉孔,都必须经过镗床的精细打磨,以确保其精确度和质量。此外,航天器的各类控制器、推进器以及传感器等精密部件,同样需要借助镗床来完成加工。
扩孔:扩孔是对已钻、铸或锻的孔进行进一步加工的工序,旨在增大孔径并提升其加工质量。它既可作为精加工前的预处理,也可作为对精度要求不高的孔的较终加工。扩孔钻与麻花钻相似,但拥有更多的刀齿,且无横刃,从而提供了良好的切削条件。相较于钻孔,扩孔具有以下优势:(1)扩孔钻拥有3至8个刀齿,提供出色的导向性和稳定的切削;(2)无横刃设计优化了切削条件;(3)较小的加工余量、浅容屑槽、粗钻芯以及良好的刀体强度和刚性。扩孔的精度通常可达IT11IT10级,表面粗糙度Ra为12.56.3μm。这一工艺常用于加工直径小于80mm的孔。当需要钻直径较大的孔(D≥30mm)时,通常会先用小直径钻头进行预钻孔,然后再用相应尺寸的扩孔钻进行扩孔,以提高加工质量和效率。此外,扩孔不仅适用于圆柱孔的加工,还可通过使用各种特殊形状的扩孔钻(亦称锪钻)来加工各种沉头座孔和锪平端面。这些锪钻的前端通常配备导向柱,以已加工的孔为导向进行工作。常见的镗加工方式包括立式镗、卧式镗和数控镗等,适应不同工件要求。
钻孔:钻孔是制造孔的首道工序,其直径通常小于80mm。钻孔加工可采取两种方式:一是钻头旋转,二是工件旋转。这两种方式产生的误差有所不同。在钻头旋转的钻孔过程中,由于切削刃的不对称和钻头刚性的不足,可能导致钻头偏离中心,进而影响孔的中心线,使其偏斜或弯曲,但孔径基本保持不变。相比之下,工件旋转的钻孔方式则不同,此时钻头的偏离会引起孔径的变化,但孔的中心线仍然保持直线状态。展示了两种不同的镗孔方式:一种是工件保持静止,而刀具则进行旋转和进给运动;另一种是刀具保持旋转状态,工件进行进给运动。复杂内腔的镗削加工常需要特制的组合式刀具解决方案。苏州刨台铣镗加工原理
镗孔深度与直径比过大时,应采用特殊的长杆镗刀和辅助支撑。苏州刨台铣镗加工原理
CVD涂层硬质合金的牌号适用于大部分钢和铸铁材料的镗削加工。CVD涂层是由TiN、Al2O3、TiCN及TiC等多层成分组成的复合涂层,其中每一层涂层都具有特定功能,不同的涂层组合能抵抗不同的磨损机制。典型的硬质合金的牌号由碳化钨、碳化钽及含钴TiC等多元碳化物组成,属于行业编码规定中的C-1~C-4、C-5~C-7系列,相当于ISO标准中的K-10~K-30、M-10~M-45和P-05~P-45系列。陶瓷刀片牌号包括氧化铝(Al2O3)基和氮化硅(Si3N4)基两大类。氧化铝基陶瓷刀片又分为未涂层和PVDTiN涂层两类牌号。未涂层牌号具有较好的韧性和耐磨性,推荐用于合金钢、工具钢和硬度大于HRC60的马氏体不锈钢的镗削加工。涂层牌号则用于淬硬钢、铸铁(硬度HRC45或更高)、镍基及钴基合金的精镗加工。苏州刨台铣镗加工原理